Variational and linearly implicit integrators, with applications
نویسندگان
چکیده
We show that symplectic and linearly implicit integrators proposed by Zhang & Skeel (1997, Cheap implicit symplectic integrators. Appl. Numer. Math., 25, 297–302) are variational linearizations of Newmark methods. When used in conjunction with penalty methods (i.e., methods that replace constraints by stiff potentials), these integrators permit coarse time-stepping of holonomically constrained mechanical systems and bypass the resolution of nonlinear systems. Although penalty methods are widely employed, an explicit link to Lagrange multiplier approaches appears to be lacking; such a link is now provided (in the context of two-scale flow convergence (Tao, M., Owhadi, H. & Marsden, J. E. (2010) Nonintrusive and structure-preserving multiscale integration of stiff ODEs, SDEs and Hamiltonian systems with hidden slow dynamics via flow averaging. Multiscale Model. Simul., 8, 1269–1324). The variational formulation also allows efficient simulations of mechanical systems on Lie groups.
منابع مشابه
Finite Element Methods for Variational Integrators with Applications to Nonlinear Schrödinger Equation
In this paper we introduce a new method of spatio-temporal discretization for partial differential equations in variational form. This method generalizes the method of Marsden et al in that it uses a systematic approach to discrete jet spaces based on the finite element method. The resulting method is used to derive integrators for the Nonlinear Schrödinger (NLS) equation which exhibit superior...
متن کاملError analysis of variational integrators of unconstrained Lagrangian systems
Due to a singularity or degeneracy at zero time-step, existence and uniqueness, and accuracy, of variational integrators, cannot be established by straightforward use of the implicit function theorem. We show existence and uniqueness for variational integrators by blowing up the variational principle. The blow-up implies an accuracy one less than is observed in simulations, a deficit that is re...
متن کاملVariational Discrete Dirac Mechanics—implicit Discrete Lagrangian and Hamiltonian Systems
We construct discrete analogues of Tulczyjew’s triple and induced Dirac structures by considering the geometry of symplectic maps and their associated generating functions. We demonstrate that this framework provides a means of deriving implicit discrete Lagrangian and Hamiltonian systems, while incorporating discrete Dirac constraints. In particular, this yields implicit nonholonomic Lagrangia...
متن کاملVariational Integrators for Almost-Integrable Systems
We construct several variational integrators—integrators based on a discrete variational principle—for systems with Lagrangians of the form L = LA + εLB, with ε ≪ 1, where LA describes an integrable system. These integrators exploit that ε ≪ 1 to increase their accuracy by constructing discrete Lagrangians based on the assumption that the integrator trajectory is close to that of the integrable...
متن کاملHamilton-Pontryagin Integrators on Lie Groups Part I: Introduction and Structure-Preserving Properties
In this paper, structure-preserving time-integrators for rigid body-type mechanical systems are derived from a discrete Hamilton–Pontryagin variational principle. From this principle, one can derive a novel class of variational partitioned Runge– Kutta methods on Lie groups. Included among these integrators are generalizations of symplectic Euler and Störmer–Verlet integrators from flat spaces ...
متن کامل